HERTIS

Hybrid Exhaust Gas Cleaning Retrofit Technology for International Shipping

ACCELERATOR FOR GREENER SHIPPING

The first ever use of accelerator technology on a sea-going ship

Horizon 2020 Mobility for Growth, Innovation Action project proposal within the topic LC-MG-1-8-2019

- We are offering solution to tackle one of the shipping industry's most pressing problems its large-scale maritime emissions
- It is singular and cost effective technology dealing simultaneously with SO_X , NO_X , particulate matter and volatile organic compounds in the ship exhaust gases
- Its feasibility has been recently confirmed within the ARIES Proof of the Concept project
- It will help EU maritime and accelerator industries to regain their competitive edge and to improve our maritime trade footprint at the global scale

HERTIS links established scientific labs of **West Europe** with dynamic maritime industry of **South Europe** and vibrant research institutes of **North-East Europe**. It is unprecedented and truly Europe **trans-national** and **multi-disciplinary** undertaking, **linking together maritime and particle accelerator communities** under umbrella of the scientific research:

- » Joint endeavour of 12 partners from 8 European countries
- » World's leading research organisations CERN and Fraunhofer FEP in the strong pan-European partnership with INCT, Riga Technical University and University of Tartu
- » Major shipping industry players Grimaldi Group, American Bureau of Shipping, Remontowa Holding, and Ecospray
- » Economical feasibility and business case will be impartially evaluated by leading business expert KPMG supported by Biopolinex
- » Environmental impact assessment expertise and objectiveness is ensured by Western Norway Research Institute
- » Supported by crucial stakeholders: TIARA and ARIES communities, EC, IT CG, and scrubber manufacturers

Project info:

Total budget for 4 years: 6 131 418 EUR
Requested EU contribution: 5 027 620 EUR
Matching funds by industry: 486 275 EUR
Co-financed by Fraunhofer FEP and INCT: 633 865 EUR

Contact: hep@rtu.lv

HERTIS

Hybrid Exhaust Gas Cleaning Retrofit Technology for International Shipping

We are developing a compact, safe and highly portable hybrid exhaust gas-cleaning retrofit unit that combines an electron beam accelerator with improved wet-scrubbing technology

We will install the hybrid system on a ship and will test it both during sea voyage and while manoeuvring in ports – demonstration of technology in the relevant environment (TRL6)

This will achieve reduction of $SO_x \le 6$ g/kWh as SO_2 , and $NO_x \le 1.96$ g/kWh as NO_2 – thus exceeding the most stringent current legislative requirements. The PM emission should not exceed 0.20 g/kWh

Principle of the hybrid EB-wet scrubber exhaust gas cleaning technology

Inlet of the installation Exhaust gases with high concentration of NO_X and

SO_x and VOC (PAH)

Electron Beam

Oxidation of the NO to

Wet scrubbing

Absorbtion of NO₂ and higher ntrogen oxides, SO₂ and higher sulphur oxides, HNO₃ and H₂SO₄

Outlet of the installation

Clean exhaust gases matching the imposed regulations

HERTIS goal is to develop, demonstrate and validate a novel hybrid exhaust gas cleaning retrofit technology, providing the European maritime and accelerator community with a much-needed innovative, cost-effective retrofit solution that would substantially improve environmental performance of existing fleets by significantly reducing ship emissions of NO_x , SO_x , PM and VOC (including PAHs).

- Design, model, manufacture and demonstrate on-board a unique hybrid ship exhaust gas cleaning retrofit system, comprised of EB accelerator and improved wet scrubber
- Develop a novel toroidal type of EB accelerator for the on-board exhaust gas cleaning retrofit system
- Perform economic and financial analysis, including assessment of life-cycle cost-effectiveness of the exhaust gas cleaning retrofit system and creating the business case roadmap
- Perform environmental impact analysis and life-cycle assessment of the hybrid exhaust gas cleaning retrofit system
- **Define** operational, test and demonstration (in the maritime environment statutory and class) requirements of the novel hybrid exhaust gas-cleaning retrofit system
- Engage stakeholders and link the particle accelerator community with the maritime community
- Disseminate progress and outcomes and facilitate maritime and accelerator communities uptake